

ML with Amazon SageMaker From idea to production

Yevgeniy Ilyin

Senior Solutions Architect AWS

© 2022, Amazon Web Services, Inc. or its affiliates.

Insanity is doing the same thing over and over and expecting different results.

Albert Einstein

Challenges with ML development

Elasticity

- Different steps in the ML lifecycle require different compute resources
- Lack of elasticity leads to over- or under-provisioning of resources, poor cost-efficiency
- Need for decoupling the UI from kernel compute

Scalability

- Management overhead to patch, secure, and maintain all ML environments being used by a large team
- Moving to production cycle typically requires switching between different tools and environments
- Processing of large datasets in a notebook is a challenge and requires specialized frameworks
- Challenge with distributed processing

Collaboration & Access

- Development environment isolation is required for teams as each data scientist might be working on their ML problem
- Need for teams to share their work and artifacts while also preserving the state
- Need to support different types of teams
- How to keep people away from data

Amazon SageMaker

Amazon SageMaker Studio Notebooks

IDE for ML

- All ML tools and features in a single, web-based interface
- One-click sharing of notebooks and state
- Full isolation of data science environments for each users
- Amazon Elastic File System (EFS) private home directory for each user

Elastic notebooks

- One-click provisioning of elastic underlying compute resources, easy switching between GPU and CPU instances
- Built on Docker containers and EC2
- Decoupled Jupyter server from kernels
- Decoupled storage from kernel compute
- Full isolation of compute resources for each user

Operationalization

- Purpose-built functionalities to support and simplify production deployment and monitoring
- Enterprise-grade security
- Model deployment, inference endpoint management and monitoring from Studio UX
- Visual data processing flows and orchestration pipelines from Studio UX
- Data and resource access isolation

Demo

Ideation and experimentation flow

© 2022, Amazon Web Services, Inc. or its affiliates.

Productization flow

Visual data preparation flow

Model training Python SDK code

```
[82]: xgb = sagemaker.estimator.Estimator(container,
                                          role,
                                          instance_count=1,
                                          instance_type='ml.m4.xlarge',
                                          output_path=f's3://{default_bucket}/{project_prefix}/mod
                                          sagemaker session=session.
                                          base job name=project prefix)
      xgb.set_hyperparameters(max_depth=10,
                              eta=0.2,
                              gamma=4,
                              min_child_weight=6,
                              subsample=0.8,
                              silent=0,
                              objective=objective,
                              num_class=num_class if num_class > 2 else None,
                              num round=100)
[*]: xgb.fit({'train': s3_input_train, 'validation': s3_input_validation})
      2022-04-25 09:39:53 Starting - Starting the training job...
      2022-04-25 09:40:21 Starting - Preparing the instances for trainingProfilerReport-165087959
      3: InProgress
      2022-04-25 09:42:19 Downloading - Downloading input data..
```

Run batch inference Python SDK code

```
[39]: transformer = xgb.transformer(
    instance_count=1,
    instance_type="ml.m5.4xlarge",
    accept="text/csv",
    role=role,
    output_path=transform_output_path,
    model_name=model_name
```

Run transform job

Pipeline Python SDK code

```
pipeline = Pipeline(
   name=pipeline_name,
    parameters=[
        p_processing_instance_type,
        p_processing_instance_count,
        p_processing_volume_size,
        p_flow_output_name,
        p_input_flow,
        p_input_data,
        p_output_prefix
    ],
    steps=[step_process],
    sagemaker_session=sagemaker_session
response = pipeline.upsert(
    role_arn=execution_role,
   description=pipeline_description,
    tags=[
    {'Key': 'sagemaker:project-name', 'Value': project_name },
    {'Key': 'sagemaker:project-id', 'Value': project_id }
],
```

Start pipeline

- [16]: pipeline.upsert(role_arn=execution_role)
 execution = pipeline.start()
- []: execution.wait()
- []: execution.list_steps()

An ML use case: from idea to production

Step 1: Explore

- Initial interactive data exploration, processing, and model training
- Experiment in a managed, elastic, and shareable Studio notebook
- Train a pre-built SageMaker algorithm on an compute instance outside the experimentation notebook
- User isolation in Studio: each Studio user has own dedicated resources
- One-click notebook sharing with other Studio users

Step 2: Orchestrate and automate

- Agility and interaction of notebook
- Data processing with Data Wrangler or processing jobs
- Orchestration with AWS Step Functions and SageMaker Pipelines
- Store features in a centralized feature store

Step 3: Move to production

- Production workflow
- Detect bias
- Model registry
- Model monitor
- Event-based workflows
- CI/CD automation

Demo

Productivity: Low code no code ML tools

Amazon SageMaker low code no code tools

Canvas

...generate, use, and share ML models in a dedicated no-code workspace

Business leads Domain Experts Business Analysts

Autopilot

...use AutoML to automatically build, train, and tune the best machine learning pipelines for your tabular datasets

Data Wrangler

...do exploratory data analysis, data preparation and feature engineering with a simple dragand-drop UI

JumpStart

...use pre-trained state-of-the-art models like ResNet, Hugging Face BERT and GPT-2 for your Computer Vision, and Natural Language Processing

SageMaker Studio

Data Engineers and Data Scientists

Additional resources

Amazon SageMaker

Machine learning for every data scientist and developer

Amazon SageMaker Studio Lab Learn and experiment with machine learning

<u>Amazon SageMaker Studio Notebooks</u> Deep dive into Studio notebooks architecture

Why use Docker containers for ML development? A case for considering using containers for machine learning development

Thank you!

Yevgeniy Ilyin

© 2022, Amazon Web Services, Inc. or its affiliates.